UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-MATHEMATICS

(REVISEd Syllabus 2023)

The figures in the margin indicate full marks.

The question paper contains MATHGE4-II, MATHGE4-III,
 MATHGE4-V. The candidates are required to answer any one from the three courses.
 Candidates should mention it clearly on the Answer Book.

MATHGE4-II

Algebra

GROUP-A

1. Answer any four questions:
(a) Prove that $1+2+\cdots \cdots+n=\frac{n(n+1)}{2}, \forall n \in \mathbb{N}$, by the principle of induction.
(b) Show that the product of all values of $(1+i \sqrt{3})^{3 / 4}$ is 8 . 3
(c) Prove that an inverse of the equivalence relation is an equivalence relation. 3
(d) Find the number and nature of real roots of the equation: 3

$$
x^{4}+4 x^{3}-x^{2}-2 x-5=0
$$

(e) Find all eigen values of the following matrix:

$$
\left(\begin{array}{rrr}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

(f) Find the rank of the matrix $\left(\begin{array}{lll}3 & 5 & 7 \\ 2 & 1 & 3 \\ 1 & 4 & 4\end{array}\right)$.

GROUP-B

Answer any four questions

$6 \times 4=24$
2. Prove that $a^{6}+b^{6}+c^{6}+d^{6} \geq a b c d\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ where a, b, c, d are four positive real numbers.
3. Using the principle of induction, prove that $10^{n+1}+10^{n}+1$ is divisible by 3 for all $n \in \mathbb{N}$.
4. Solve the system of equations using row reduced form:

$$
\begin{aligned}
& x+2 y+z=1 \\
& 3 x+y+2 z=3 \\
& x+7 y+2 z=1
\end{aligned}
$$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

5. Verify Cayley-Hamilton theorem for the following matrix:

$$
A=\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Hence find A^{-1} and A^{9}.
6. Solve: $2 x^{4}+8 x^{3}+3 x^{2}+4 x+1=0$, whose the sum of two roots is zero.
7. Solve by Ferrari's method:

$$
x^{4}+4 x^{3}-6 x^{2}+20 x+8=0
$$

GROUP-C

Answer any two questions

8. (a) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the equation whose roots are $\beta^{2}+\gamma^{2}-\alpha^{2}, \gamma^{2}+\alpha^{2}-\beta^{2}, \alpha^{2}+\beta^{2}-\gamma^{2}$.
(b) Find the least positive residue in $2^{41}(\bmod 23)$. 3
(c) Show that $a^{12}-b^{12}$ is divisible by 91 if a and b both are prime to 91 .
9. (a) Reduce the matrix A to its row reduced echelon form and hence find its rank,
where $A=\left(\begin{array}{rrrr}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right)$.
(b) If p is a prime and a, b are positive integers, then show that

$$
\begin{equation*}
(a+b)^{p} \equiv(a+b)(\bmod p) \tag{4}
\end{equation*}
$$

(c) Find two integers u and v satisfying $54 u+24 v=30$.
10.(a) Solve $x^{3}-6 x^{2}-6 x-7=0$ by Cardon's method. 6
(b) If $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$, prove that 6

$$
\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)
$$

and $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$
11.(a) Find $\cos 2 \theta \cosh 2 \phi$, if $\sin (\theta+i \phi)=\tan \beta+i \sec \beta$.
(b) Prove that every square matrix satisfies its own characteristic equation.

MATHGE4-III

Differential Equation and Vector Calculus

GROUP-A

1. Answer any four questions from the following:
(a) Show that $x=1$ is a singular point of the ordinary differential equation.

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0
$$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

(b) Evaluate: $\frac{1}{D^{2}+9} \sin 3 x$
(c) Find all three solutions of $\frac{d^{3} y}{d x^{3}}-5 \frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}-4=0$ and show that they are Linearly independent.
(d) Show that the derivative of a vector of constant length is perpendicular to the vector.
(e) A particle moves along a curve $x=e^{-t}, y=2 \cos 4 t, z=2 \sin 4 t$, where t is time. Determine its velocity and acceleration at $t=\pi$.
(f) Evaluate $\nabla e^{r^{2}}$ where $r^{2}=x^{2}+y^{2}+z^{2}$.

GROUP-B

Answer any four questions from the following

2. Solve by Method of undetermined coefficients $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}=x+e^{x} \sin x$.
3. Solve: $\frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}=x^{3}$
4. Solve $\frac{d^{2} y}{d x^{2}}-y=x$ in powers of x.
5. Solve: $\frac{d y}{d x}+2 y-3 z=x$

$$
\begin{equation*}
\frac{d z}{d x}+2 z-3 y=e^{2 x} \tag{6}
\end{equation*}
$$

6. If $\vec{F}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve C given by $x=t^{2}+1$, $y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.
7. Find the directional derivative of the function $f=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}$ at the point $(3,1,2)$ in the direction of the vector $y z \hat{i}+z x \hat{j}+x y \hat{k}$.

GROUP-C

Answer any two questions from the following

8. (a) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=\frac{1}{(1-x)^{2}}$
(b) Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan a x$.
9. (a) Solve $x \frac{d^{2} y}{d x^{2}}-(x-2) \frac{d y}{d x}+2 y=x^{3} e^{x}$ after determination of a solution of its reduced equation.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

(b) Solve: $\quad \frac{d^{2} x}{d t^{2}}+4 x+y=t e^{3 t}$

$$
\frac{d^{2} y}{d t^{2}}+y-2 x=\cos ^{2} t
$$

10.(a) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve $x^{2}+y^{2}=1, z=1$ in the positive direction from
$(0,1,1)$ to $(1,0,1)$ if $\vec{F}=(2 x+y z) \hat{i}+x z \hat{j}+(x y+2 z) \hat{k}$.
(b) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=x y+y z+z x$, prove that

$$
(\operatorname{grad} u) \cdot[(\operatorname{grad} v) \times(\operatorname{grad} w)]=0
$$

11.(a) Prove that $\frac{d}{d t}(\vec{F}(t) \times \vec{G}(t))=\vec{F}(t) \times \frac{d \vec{G}(t)}{d t}+\frac{d \vec{F}(t)}{d t} \times \vec{G}(t)$.
(b) Prove that $\operatorname{grad} \phi$ is an irrotational vector field.
(c) State Green's theorem and show that it is a particular case of Stoke's theorem.

MATHGE4-V

Numerical Methods

GROUP-A

1. Answer any four questions from the following:
(a) If $\frac{5}{6}$ represent approximately by 0.8333 . Find relative error and percentage error.
(b) Evaluate: $\left(\frac{\Delta^{2}}{E}\right) x$
(c) What is the geometrical representation of the Regula-Falsi method?
(d) State three differences between direct and iterative methods.
(e) Show that $\nabla y_{n+1}=h\left[1+\frac{1}{2} \nabla+\frac{5}{12} \nabla^{2}+\cdots \cdots \cdot\right] D y_{n}$, where D is the differential operator.
(f) Prove that $(1+\Delta)(1-\nabla)=1$.

GROUP-B

Answer any four questions from the following

2. Explain the Secant method for numerical solution of the equation $f(x)=0$.
3. Use iterative formula to evaluate $\sqrt[7]{125}$, correct upto four significant figures.
4. Deduce Newton's backward interpolation formula with error terms.
5. Find $f(1.02)$ from the following table:

x	1.00	1.10	1.20	1.30
$f(x)$	0.8415	0.8912	0.9320	0.9636

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

6. The equation $x^{2}+p x+q=0$ has two real roots α, β. Show that the iteration method $x_{k+1}=-\frac{p x_{k}+q}{x_{k}}$ is convergent near $x=\alpha$, if $|\alpha|>|\beta|$.
7. Evaluate $\int_{0}^{\pi / 2} \sqrt{\sin x} d x$, taking $n=6$, correct upto four significant figures by Simpson's $\frac{1}{3}^{\text {rd }}$ rule.

GROUP-C

Answer any two questions from the following
8. (a) Describe Newton's-Raphson method and find the geometrical interpretation of Newton's-Raphson method.
(b) Find the positive root of the equation $x^{3}+x-1=0$ by fixed point iteration method correct to three decimal places.
9. (a) Explain the $2^{\text {nd }}$ order Runge-Kutta method for the numerical solution of a $1^{\text {st }}$ order differential equation $\frac{d y}{d x}=f(x, y)$ subject to the initial condition $y=y_{0}$, when $x=x_{0}$.
(b) Solve by modified Euler's method, the following differential equation for $x=1$ by taking $h=0.2$;

$$
\frac{d y}{d x}=x y, \quad y=1 \text { when } x=0
$$

10.(a) Find a polynomial of least degree for the data $f(-1)=1, f(0)=1, f(1)=1$ and $f(2)=-5$.
(b) Use Gauss-elimination method to solve the following system:

$$
\begin{gathered}
-10 x_{1}+6 x_{2}+3 x_{3}+100=0 \\
6 x_{1}-5 x_{2}+5 x_{3}+100=0 \\
3 x_{1}+6 x_{2}-10 x_{3}+100=0
\end{gathered}
$$

Correct upto three significant figures.
11.(a) Compute $\log _{10} 3.5$ from the data set:

x	2	3	5	7
$\log _{10} x$	0.301	0.477	0.699	0.845

(b) Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:

$$
\begin{array}{r}
6.1 x_{1}+2.2 x_{2}+1.2 x_{3}=16.55 \\
2.2 x_{1}+5.5 x_{2}-1.5 x_{3}=10.55 \\
1.2 x_{1}-1.5 x_{2}+7.2 x_{3}=16.80 \\
-\times-工
\end{array}
$$

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-MATHEMATICS

(Old Syllabus 2018)

The figures in the margin indicate full marks.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV \& MATHGE4-V. The candidates are required to answer any one from the five courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-I

Cal. Geo. and DE.

GROUP-A

1. Answer any four questions:
(a) If $y=\cos ^{4} x$, then find y_{n}.
(b) Evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}+\sin x-1}{\log (1+x)}
$$

(c) Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+5=0$. 3
(d) Find the point of inflexion of the curve $x=(y-1)(y-2)(y-3)$. 3
(e) Find the length of one arc of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$. 3
(f) Solve: $\frac{d y}{d x}=1+e^{x+y}$

GROUP-B

Answer any four questions from the following

2. Find the envelope of the family of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where the parameters a and b are connected by $\sqrt{a}+\sqrt{b}=\sqrt{c}$ where c is a constant.
3. Find the asymptotes of the curve $y^{4}-2 y^{3} x+2 y x^{3}-x^{4}+x^{2}-y^{2}+x-y-1=0$. 6
4. Trace the curve $y^{2}=x^{2}\left(1-x^{2}\right)$. 6
5. If $I_{n}=\int \frac{t^{n}}{1+t^{2}} d t$, show that $I_{n+2}=\frac{t^{n+1}}{n+1}-I_{n}$. Hence find I_{5}. $\quad 6$
6. Reduce the following equation to its canonical form and determine the nature of 6 the conic represented by it:

$$
4 x^{2}-4 x y+y^{2}+2 x-26 y+9=0
$$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

7. (a) Solve: $y^{2} d x+\left(x-\frac{1}{y}\right) d y=0$
(b) Find the integrating factor of $\left(x^{2}+x y^{4}\right) d x+2 y^{3} d y=0$.

GROUP-C

Answer any two questions from the following

8. (a) Evaluate: $\lim _{x \rightarrow 0}(\cot x)^{1 / \log x}$
(b) Find $\int x^{4} e^{a x} d x$.
(c) Find the equation of the sphere for which the circle 4 4 $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0,2 x+3 y+4 z=8$ is a great circle.
9. (a) Solve the differential equation: $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$. 4
(b) Obtain the differential equation of all parabolas each of which has a latus rectum $4 a$, and whose axes are parallel to the x-axis.
(c) Solve: $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$.
10.(a) A plane passing through a fixed point (a, b, c) cuts the axes at A, B, C. Show that the locus of the centre of the sphere $O A B C$ is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.
(b) Find the equation of the right circular cylinder which passes through the point $(3,-1,1)$ and has the line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z-2}{1}$ as axis.
11.(a) Find the condition that the line $\frac{l}{r}=a \cos \theta+b \sin \theta$ may touch the conic $\frac{l}{r}=1+e \cos (\theta-\beta)$.
(b) Show that the whole area of the curve $a^{2} y^{2}=x^{3}(2 a-x)$ is πa^{2}.

MATHGE4-II

Algebra

GROUP-A

1. Answer any four questions:
(a) Prove that $1+2+\cdots \cdots+n=\frac{n(n+1)}{2}, \forall n \in \mathbb{N}$, by the principle of induction.
(b) Show that the product of all values of $(1+i \sqrt{3})^{3 / 4}$ is 8 . 3
(c) Prove that an inverse of the equivalence relation is an equivalence relation. 3
(d) Find the number and nature of real roots of the equation:

$$
x^{4}+4 x^{3}-x^{2}-2 x-5=0
$$

(e) Find all eigen values of the following matrix: $\left(\begin{array}{rrr}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$.
(f) Find the rank of the matrix $\left(\begin{array}{lll}3 & 5 & 7 \\ 2 & 1 & 3 \\ 1 & 4 & 4\end{array}\right)$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

GROUP-B

Answer any four questions
2. Prove that $a^{6}+b^{6}+c^{6}+d^{6} \geq a b c d\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ where a, b, c, d are four positive real numbers.
3. Using the principle of induction, prove that $10^{n+1}+10^{n}+1$ is divisible by 3 for all $n \in \mathbb{N}$.
4. Solve the system of equations using row reduced form:

$$
\begin{aligned}
& x+2 y+z=1 \\
& 3 x+y+2 z=3 \\
& x+7 y+2 z=1
\end{aligned}
$$

5. Verify Cayley-Hamilton theorem for the following matrix:

$$
A=\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Hence find A^{-1} and A^{9}.
6. Solve: $2 x^{4}+8 x^{3}+3 x^{2}+4 x+1=0$, whose the sum of two roots is zero.
7. Solve by Ferrari's method: $x^{4}+4 x^{3}-6 x^{2}+20 x+8=0$

GROUP-C

Answer any two questions

8. (a) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the equation whose roots are $\beta^{2}+\gamma^{2}-\alpha^{2}, \gamma^{2}+\alpha^{2}-\beta^{2}, \alpha^{2}+\beta^{2}-\gamma^{2}$.
(b) Find the least positive residue in $2^{41}(\bmod 23)$. 3
(c) Show that $a^{12}-b^{12}$ is divisible by 91 if a and b both are prime to 91 .
9. (a) Reduce the matrix A to its row reduced echelon form and hence find its rank,
where $A=\left(\begin{array}{rrrr}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right)$.
(b) If p is a prime and a, b are positive integers, then show that

$$
(a+b)^{p} \equiv(a+b)(\bmod p) .
$$

(c) Find two integers u and v satisfying $54 u+24 v=30$.
10.(a) Solve $x^{3}-6 x^{2}-6 x-7=0$ by Cardon's method.
(b) If $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$, prove that

$$
\begin{array}{ll}
& \cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma) \tag{6}\\
\text { and } & \sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)
\end{array}
$$

11.(a) Find $\cos 2 \theta \cosh 2 \phi$, if $\sin (\theta+i \phi)=\tan \beta+i \sec \beta$.
(b) Prove that every square matrix satisfies its own characteristic equation.

MATHGE4-III

Differential Equation and Vector Calculus

GROUP-A

1. Answer any four questions from the following:
(a) Show that $x=1$ is a singular point of the ordinary differential equation.

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0
$$

(b) Evaluate: $\frac{1}{D^{2}+9} \sin 3 x$
(c) Find all three solutions of $\frac{d^{3} y}{d x^{3}}-5 \frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}-4=0$ and show that they are Linearly independent.
(d) Show that the derivative of a vector of constant length is perpendicular to the vector.
(e) A particle moves along a curve $x=e^{-t}, y=2 \cos 4 t, z=2 \sin 4 t$, where t is time.

Determine its velocity and acceleration at $t=\pi$.
(f) Evaluate $\nabla e^{r^{2}}$ where $r^{2}=x^{2}+y^{2}+z^{2}$.

GROUP-B

Answer any four questions from the following

2. Solve by Method of undetermined coefficients $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}=x+e^{x} \sin x$.
3. Solve: $\frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}=x^{3}$
4. Solve $\frac{d^{2} y}{d x^{2}}-y=x$ in powers of x.
5. Solve: $\frac{d y}{d x}+2 y-3 z=x$

$$
\frac{d z}{d x}+2 z-3 y=e^{2 x}
$$

6. If $\vec{F}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve C given by $x=t^{2}+1$, $y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.
7. Find the directional derivative of the function $f=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}$ at the point $(3,1,2)$ in the direction of the vector $y z \hat{i}+z x \hat{j}+x y \hat{k}$.

GROUP-C

Answer any two questions from the following

8. (a) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=\frac{1}{(1-x)^{2}}$
(b) Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan a x$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

9. (a) Solve $x \frac{d^{2} y}{d x^{2}}-(x-2) \frac{d y}{d x}+2 y=x^{3} e^{x}$ after determination of a solution of its reduced equation.
(b) Solve: $\frac{d^{2} x}{d t^{2}}+4 x+y=t e^{3 t}$

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+y-2 x=\cos ^{2} t \tag{6}
\end{equation*}
$$

10.(a) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve $x^{2}+y^{2}=1, z=1$ in the positive direction from $(0,1,1)$ to $(1,0,1)$ if $\vec{F}=(2 x+y z) \hat{i}+x z \hat{j}+(x y+2 z) \hat{k}$.
(b) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=x y+y z+z x$, prove that

$$
(\operatorname{grad} u) \cdot[(\operatorname{grad} v) \times(\operatorname{grad} w)]=0
$$

11.(a) Prove that $\frac{d}{d t}(\vec{F}(t) \times \vec{G}(t))=\vec{F}(t) \times \frac{d \vec{G}(t)}{d t}+\frac{d \vec{F}(t)}{d t} \times \vec{G}(t)$.
(b) Prove that $\operatorname{grad} \phi$ is an irrotational vector field.
(c) State Green's theorem and show that it is a particular case of Stoke's theorem.

MATHGE4-IV

Group Theory

GROUP-A

Answer any four questions from the following

1. Prove that a group (G, \circ) contains only one identity element.
2. Prove that in a group $G(a b)^{-1}=b^{-1} a^{-1}$ for all $a, b \in G$.
3. Show that the set of matrices

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

forms a commutative group under matrix multiplication.
4. Let a be an element of a group G. If $O(a)=n$ and $a^{m}=e$, then show that n is a divisor of m.
5. Prove that every cyclic group is abelian.
6. Let $(G, \circ)=(\mathbb{Z},+)$ and a mapping $\phi: G \rightarrow G$ be defined by $\phi(x)=x+1$, 3 $x \in G=\mathbb{Z}$. Examine if ϕ is a homomorphism.

GROUP-B

Answer any four questions from the following

7. Let H and K be subgroups of a group G. Then show that $H K$ is a subgroup of G if and only if $H K=K H$.
8. Prove that every group of prime order is cyclic.
9. Prove that a finite cyclic group of order n has one and only one subgroup of order 6 d for every divisor d of n.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

10. Let H be a subgroup of a group G. Then show that H is normal in G if and only if $h \in H$ and $x \in G \Rightarrow x h x^{-1} \in H$.
11. Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Let $a \in G$ be such that $O(a)=n$ and $O(f(a))=m$. Prove that $O(f(a)) \mid O(a)$ and f is one-one if and only if $m=n$.
12. Let H be a subgroup of a group. Prove that the relation ρ defined on G by " $a \rho b$ if and only if $a^{-1} b \in H$ " for $a, b \in G$ is an equivalence relation on G.

GROUP-C

Answer any two questions from the following

13.(a) Let G be a finite cyclic group generated by a. Then show that $O(G)=n$ if and only if $O(a)=n$.
(b) Let G and G^{\prime} be two groups and $\phi: G \rightarrow G^{\prime}$ be a homomorphism, prove that $\phi(G)$ is a subgroup of G^{\prime}.
14.(a) Let H be a subgroup of a group G. Prove that there is always a one-one onto mapping between any two right cosets of H in G.
(b) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Then show that $\operatorname{ker} f$ is a normal subgroup of G.
15.(a) If G is a finite group, then show that the order of any element of G divides the order of G and $a^{O(G)}=e$ for any $a \in G$.
(b) Let H be a subgroup of a group G and $[G: H]=2$. Then show that H is normal in G.
16.(a) Let H be a subgroup of a commutative group G. Prove that G / H is commutative. Is converse true? Justify.
(b) Show that the map $\phi:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(\mathbb{Z}_{5},+_{5}\right)$, defined by $\phi(\bar{x})=3 \bar{x}, \bar{x} \in \mathbb{Z}_{5}$ is an isomorphism.

MATHGE4-V

Numerical Methods

GROUP-A

1. Answer any four questions from the following:
(a) If $\frac{5}{6}$ represent approximately by 0.8333 . Find relative error and percentage error.
(b) Evaluate: $\left(\frac{\Delta^{2}}{E}\right) x$
(c) What is the geometrical representation of the Regula-Falsi method?
(d) State three differences between direct and iterative methods.
(e) Show that $\nabla y_{n+1}=h\left[1+\frac{1}{2} \nabla+\frac{5}{12} \nabla^{2}+\cdots \cdots \cdot\right] D y_{n}$, where D is the differential operator.
(f) Prove that $(1+\Delta)(1-\nabla)=1$.

GROUP-B

Answer any four questions from the following
2. Explain the Secant method for numerical solution of the equation $f(x)=0$.
3. Use iterative formula to evaluate $\sqrt[7]{125}$, correct upto four significant figures.
4. Deduce Newton's backward interpolation formula with error terms.
5. Find $f(1.02)$ from the following table:

x	1.00	1.10	1.20	1.30
$f(x)$	0.8415	0.8912	0.9320	0.9636

6. The equation $x^{2}+p x+q=0$ has two real roots α, β. Show that the iteration method $x_{k+1}=-\frac{p x_{k}+q}{x_{k}}$ is convergent near $x=\alpha$, if $|\alpha|>|\beta|$.
7. Evaluate $\int_{0}^{\pi / 2} \sqrt{\sin x} d x$, taking $n=6$, correct upto four significant figures by Simpson's $1 / 3^{\text {rd }}$ rule.

GROUP-C

Answer any two questions from the following

8. (a) Describe Newton's-Raphson method and find the geometrical interpretation of
(b) Find the positive root of the equation $x^{3}+x-1=0$ by fixed point iteration method correct to three decimal places.
9. (a) Explain the $2^{\text {nd }}$ order Runge-Kutta method for the numerical solution of a $1^{\text {st }}$ order differential equation $\frac{d y}{d x}=f(x, y)$ subject to the initial condition $y=y_{0}$, when $x=x_{0}$.
(b) Solve by modified Euler's method, the following differential equation for $x=1$ by taking $h=0.2$;

$$
\frac{d y}{d x}=x y, \quad y=1 \text { when } x=0
$$

10.(a) Find a polynomial of least degree for the data $f(-1)=1, f(0)=1, f(1)=1$ and $f(2)=-5$. 6
(b) Use Gauss-elimination method to solve the following system:

$$
\begin{gathered}
-10 x_{1}+6 x_{2}+3 x_{3}+100=0 \\
6 x_{1}-5 x_{2}+5 x_{3}+100=0 \\
3 x_{1}+6 x_{2}-10 x_{3}+100=0
\end{gathered}
$$

Correct upto three significant figures.
11.(a) Compute $\log _{10} 3.5$ from the data set:

x	2	3	5	7
$\log _{10} x$	0.301	0.477	0.699	0.845

(b) Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:

$$
\begin{aligned}
& 6.1 x_{1}+2.2 x_{2}+1.2 x_{3}=16.55 \\
& 2.2 x_{1}+5.5 x_{2}-1.5 x_{3}=10.55 \\
& 1.2 x_{1}-1.5 x_{2}+7.2 x_{3}=16.80
\end{aligned}
$$

