

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-MATHEMATICS

(REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains MATHGE4-II, MATHGE4-III, MATHGE4-V. The candidates are required to answer any *one* from the *three* courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-II

ALGEBRA

GROUP-A

1.	Answer any <i>four</i> questions:	$3 \times 4 = 12$
	(a) Prove that $1+2+\dots+n=\frac{n(n+1)}{2}$, $\forall n \in \mathbb{N}$, by the principle of induction.	3
	(b) Show that the product of all values of $(1 + i\sqrt{3})^{3/4}$ is 8.	3
	(c) Prove that an inverse of the equivalence relation is an equivalence relation.	3
	(d) Find the number and nature of real roots of the equation:	3
	$x^4 + 4x^3 - x^2 - 2x - 5 = 0.$	
	(e) Find all eigen values of the following matrix:	3
	$\begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$ (f) Find the rank of the matrix $\begin{pmatrix} 3 & 5 & 7 \\ 2 & 1 & 3 \\ 1 & 4 & 4 \end{pmatrix}.$	3

GROUP-B

	Answer any <i>four</i> questions	$6 \times 4 = 24$
2.	Prove that $a^6 + b^6 + c^6 + d^6 \ge abcd(a^2 + b^2 + c^2 + d^2)$ where a, b, c, d are four positive real numbers.	6
3.	Using the principle of induction, prove that $10^{n+1} + 10^n + 1$ is divisible by 3 for all $n \in \mathbb{R}$	N. 6
4.	Solve the system of equations using row reduced form: x + 2y + z = 1	6
	3x + y + 2z = 3	
	x + 7y + 2z = 1	

Verify Cayley-Hamilton theorem for the following matrix: 5.

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Hence find A^{-1} and A^{9} .

6. Solve:
$$2x^4 + 8x^3 + 3x^2 + 4x + 1 = 0$$
, whose the sum of two roots is zero.

Solve by Ferrari's method: 7.

$$x^4 + 4x^3 - 6x^2 + 20x + 8 = 0$$

GROUP-C		
Answer any two questions	$12 \times 2 = 24$	
8. (a) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are $\beta^2 + \gamma^2 - \alpha^2$, $\gamma^2 + \alpha^2 - \beta^2$, $\alpha^2 + \beta^2 - \gamma^2$.	3	
(b) Find the least positive residue in $2^{41} \pmod{23}$.	3	
(c) Show that $a^{12} - b^{12}$ is divisible by 91 if <i>a</i> and <i>b</i> both are prime to 91.	6	
9. (a) Reduce the matrix A to its row reduced echelon form and hence find its rank, where $A = \begin{pmatrix} 0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$.	4	
(b) If p is a prime and a, b are positive integers, then show that $(p = b)^{p} = (p = b)^{p}$	4	
$(a+b)^p \equiv (a+b) \pmod{p}$.		
(c) Find two integers u and v satisfying $54u + 24v = 30$.	4	
10.(a) Solve $x^3 - 6x^2 - 6x - 7 = 0$ by Cardon's method.	6	
(b) If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and $\sin \alpha + \sin \beta + \sin \gamma = 0$, prove that	6	
$\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$		
and $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$		
11.(a) Find $\cos 2\theta \cosh 2\phi$, if $\sin(\theta + i\phi) = \tan \beta + i \sec \beta$.	5	
(b) Prove that every square matrix satisfies its own characteristic equation.	7	

MATHGE4-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

- Answer any *four* questions from the following: 1.
 - (a) Show that x = 1 is a singular point of the ordinary differential equation.

$$(x^{2}-1)\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - y = 0$$

 $3 \times 4 = 12$

6

6

6

- (b) Evaluate: $\frac{1}{D^2 + 9} \sin 3x$
- (c) Find all three solutions of $\frac{d^3y}{dx^3} 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} 4 = 0$ and show that they are Linearly independent.
- (d) Show that the derivative of a vector of constant length is perpendicular to the vector.
- (e) A particle moves along a curve $x = e^{-t}$, $y = 2\cos 4t$, $z = 2\sin 4t$, where t is time. Determine its velocity and acceleration at $t = \pi$.
- (f) Evaluate ∇e^{r^2} where $r^2 = x^2 + y^2 + z^2$.

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$

2. Solve by Method of undetermined coefficients
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = x + e^x \sin x$$
. 6

3. Solve:
$$\frac{d^4y}{dx^4} - 2\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = x^3$$
 6

4. Solve
$$\frac{d^2 y}{dx^2} - y = x$$
 in powers of x. 6

5. Solve:
$$\frac{dy}{dx} + 2y - 3z = x$$
 6

$$\frac{dz}{dx} + 2z - 3y = e^{2x}$$

6. If
$$\vec{F} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$$
, evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the curve *C* given by $x = t^2 + 1$, 6
 $y = 2t^2$, $z = t^3$ from $t = 1$ to $t = 2$.

7. Find the directional derivative of the function $f = \frac{1}{(x^2 + y^2 + z^2)^{1/2}}$ at the point 6 (3, 1, 2) in the direction of the vector $yz\hat{i} + zx\hat{j} + xy\hat{k}$.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. (a) Solve:
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$
 6

(b) Solve by method of variation of parameters
$$\frac{d^2y}{dx^2} + a^2y = \tan ax$$
. 6

9. (a) Solve $x \frac{d^2 y}{dx^2} - (x-2) \frac{dy}{dx} + 2y = x^3 e^x$ after determination of a solution of its 6 reduced equation.

(b) Solve: $\frac{d^2x}{dt^2} + 4x + y = te^{3t}$ $\frac{d^2y}{dt^2} + y - 2x = \cos^2 t$ 6

10.(a) Evaluate
$$\int_C \vec{F} \cdot d\vec{r}$$
 along the curve $x^2 + y^2 = 1$, $z = 1$ in the positive direction from
(0, 1, 1) to (1, 0, 1) if $\vec{F} = (2x + yz)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}$.
(b) If $u = x + y + z$, $v = x^2 + y^2 + z^2$, $w = xy + yz + zx$, prove that
6

$$(\operatorname{grad} u) \cdot [(\operatorname{grad} v) \times (\operatorname{grad} w)] = 0$$

11.(a) Prove that
$$\frac{d}{dt} \left(\vec{F}(t) \times \vec{G}(t) \right) = \vec{F}(t) \times \frac{d\vec{G}(t)}{dt} + \frac{d\vec{F}(t)}{dt} \times \vec{G}(t).$$
 4

(b) Prove that
$$\operatorname{grad} \phi$$
 is an irrotational vector field. 4

(c) State Green's theorem and show that it is a particular case of Stoke's theorem. 4

MATHGE4-V

NUMERICAL METHODS

GROUP-A

- 1. Answer any *four* questions from the following: $3 \times 4 = 12$
 - (a) If $\frac{5}{6}$ represent approximately by 0.8333. Find relative error and percentage error.
 - (b) Evaluate: $\left(\frac{\Delta^2}{E}\right)x$
 - (c) What is the geometrical representation of the Regula-Falsi method?
 - (d) State three differences between direct and iterative methods.

(e) Show that
$$\nabla y_{n+1} = h \Big[1 + \frac{1}{2} \nabla + \frac{5}{12} \nabla^2 + \cdots \Big] Dy_n$$
, where *D* is the differential operator.

(f) Prove that $(1 + \Delta)(1 - \nabla) = 1$.

GROUP-B

Answer any *four* questions from the following

 $6 \times 4 = 24$

- 2. Explain the Secant method for numerical solution of the equation f(x) = 0.
- 3. Use iterative formula to evaluate $\sqrt[7]{125}$, correct upto four significant figures.
- 4. Deduce Newton's backward interpolation formula with error terms.
- 5. Find f(1.02) from the following table:

x	1.00	1.10	1.20	1.30
f(x)	0.8415	0.8912	0.9320	0.9636

6.	The equation $x^2 + px + q = 0$ has two real roots α , β . Show that the iteration
	method $x_{k+1} = -\frac{px_k + q}{x_k}$ is convergent near $x = \alpha$, if $ \alpha > \beta $.
7.	Evaluate $\int_{0}^{\pi/2} \sqrt{\sin x} dx$, taking $n = 6$, correct upto four significant figures by
	Simpson's $\frac{1}{3}^{rd}$ rule.

GROUP-C

	Answer any <i>two</i> questions from the following	$12 \times 2 = 24$
8. (a)	Describe Newton's-Raphson method and find the geometrical interpretation of Newton's-Raphson method.	6
(b)	Find the positive root of the equation $x^3 + x - 1 = 0$ by fixed point iteration method correct to three decimal places.	6
9. (a)	Explain the 2 nd order Runge-Kutta method for the numerical solution of a	6
	1 st order differential equation $\frac{dy}{dx} = f(x, y)$ subject to the initial condition	
	$y = y_0$, when $x = x_0$.	
(b)	Solve by modified Euler's method, the following differential equation for $x = 1$ by taking $h = 0.2$;	6
	$\frac{dy}{dx} = xy$, $y = 1$ when $x = 0$	
10.(a)	Find a polynomial of least degree for the data $f(-1) = 1$, $f(0) = 1$, $f(1) = 1$ and $f(2) = -5$.	6
(b)	Use Gauss-elimination method to solve the following system:	6
	$-10x_1 + 6x_2 + 3x_3 + 100 = 0$	
	$6x_1 - 5x_2 + 5x_3 + 100 = 0$	
	$3x_1 + 6x_2 - 10x_3 + 100 = 0$	
	Correct upto three significant figures.	
11.(a)	Compute $\log_{10} 3.5$ from the data set:	6
	x 2 3 5 7	
	$\log_{10} x$ 0.301 0.477 0.699 0.845	
(b)	Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:	6

$$6.1x_1 + 2.2x_2 + 1.2x_3 = 16.55$$
$$2.2x_1 + 5.5x_2 - 1.5x_3 = 10.55$$
$$1.2x_1 - 1.5x_2 + 7.2x_3 = 16.80$$

4073

____X____

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-MATHEMATICS

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV & MATHGE4-V. The candidates are required to answer any *one* from the *five* courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-I

CAL. GEO. AND DE.

GROUP-A

1.		Answer any <i>four</i> questions:	$3 \times 4 = 12$
	(a)	If $y = \cos^4 x$, then find y_n .	3
	(b)	Evaluate the following limit	3
		$\lim_{x \to 0} \frac{e^x + \sin x - 1}{\log(1 + x)}$	
	(c)	Find the centre and radius of the sphere $x^2 + y^2 + z^2 + 2x - 4y - 6z + 5 = 0$.	3
	(d)	Find the point of inflexion of the curve $x = (y-1)(y-2)(y-3)$.	3
	(e)	Find the length of one arc of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$.	3
	(f)	Solve: $\frac{dy}{dx} = 1 + e^{x+y}$	3

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$ 2. Find the envelope of the family of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where the parameters *a* 6 and *b* are connected by $\sqrt{a} + \sqrt{b} = \sqrt{c}$ where *c* is a constant. 3. Find the asymptotes of the curve $y^4 - 2y^3x + 2yx^3 - x^4 + x^2 - y^2 + x - y - 1 = 0$. 4. Trace the curve $y^2 = x^2(1-x^2)$. 6

5. If
$$I_n = \int \frac{t^n}{1+t^2} dt$$
, show that $I_{n+2} = \frac{t^{n+1}}{n+1} - I_n$. Hence find I_5 .

6. Reduce the following equation to its canonical form and determine the nature of 6 the conic represented by it:

$$4x^2 - 4xy + y^2 + 2x - 26y + 9 = 0$$

7. (a) Solve: $y^2 dx + (x - \frac{1}{y}) dy = 0$	4+2
---	-----

(b) Find the integrating factor of $(x^2 + xy^4) dx + 2y^3 dy = 0$.

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
8. (a)	Evaluate: $\lim_{x \to 0} (\cot x)^{1/\log x}$	4
(b)	Find $\int x^4 e^{ax} dx$.	4
(c)	Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, $2x + 3y + 4z = 8$ is a great circle.	4
9. (a)	Solve the differential equation: $(xy^2 - e^{1/x^3}) dx - x^2 y dy = 0$.	4
(b)	Obtain the differential equation of all parabolas each of which has a latus rectum $4a$, and whose axes are parallel to the <i>x</i> -axis.	4
(c)	Solve: $(y^2 e^{xy^2} + 4x^3) dx + (2xy e^{xy^2} - 3y^2) dy = 0$.	4
10.(a)	A plane passing through a fixed point (a, b, c) cuts the axes at A, B, C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.	6
(b)	Find the equation of the right circular cylinder which passes through the point (3, -1, 1) and has the line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{1}$ as axis.	6
11.(a)	Find the condition that the line $\frac{l}{r} = a\cos\theta + b\sin\theta$ may touch the conic $\frac{l}{r} = 1 + e\cos(\theta - \beta)$.	6

(b) Show that the whole area of the curve $a^2y^2 = x^3(2a - x)$ is πa^2 . 6

MATHGE4-II Algebra

GROUP-A

1.	Answer any <i>four</i> questions:	$3 \times 4 = 12$
	(a) Prove that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$, $\forall n \in \mathbb{N}$, by the principle of induction.	3
	(b) Show that the product of all values of $(1 + i\sqrt{3})^{3/4}$ is 8.	3
	(c) Prove that an inverse of the equivalence relation is an equivalence relation.	3
	(d) Find the number and nature of real roots of the equation:	3
	$x^4 + 4x^3 - x^2 - 2x - 5 = 0.$	
	(e) Find all eigen values of the following matrix: $\begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.	3
	$\begin{pmatrix} 3 & 5 & 7 \end{pmatrix}$	

(f) Find the rank of the matrix $\begin{pmatrix} 3 & 3 & 7 \\ 2 & 1 & 3 \\ 1 & 4 & 4 \end{pmatrix}$. 3

GROUP-B

	Answer any <i>four</i> questions	6×4 = 24
2.	Prove that $a^6 + b^6 + c^6 + d^6 \ge abcd(a^2 + b^2 + c^2 + d^2)$ where a, b, c, d are four positive real numbers.	6
3.	Using the principle of induction, prove that $10^{n+1} + 10^n + 1$ is divisible by 3 for all $n \in \mathbb{N}$	N. 6
4.	Solve the system of equations using row reduced form: x + 2y + z = 1 3x + y + 2z = 3 x + 7y + 2z = 1	6
5.	Verify Cayley-Hamilton theorem for the following matrix: $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Where $G = 1 + 1^{-1} = 1 + 1^{0}$	6
ſ	Hence find A^{\prime} and A^{\prime} .	
6.	Solve: $2x^2 + 8x^3 + 3x^2 + 4x + 1 = 0$, whose the sum of two roots is zero.	6
7.	Solve by Ferrari's method: $x^4 + 4x^5 - 6x^2 + 20x + 8 = 0$	6
	GROUP-C	
	Answer any <i>two</i> questions	$12 \times 2 = 24$
8. (a)	If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are $\beta^2 + \gamma^2 - \alpha^2$, $\gamma^2 + \alpha^2 - \beta^2$, $\alpha^2 + \beta^2 - \gamma^2$.	3
(b)	Find the least positive residue in $2^{41} \pmod{23}$.	3
(c)	Show that $a^{12} - b^{12}$ is divisible by 91 if <i>a</i> and <i>b</i> both are prime to 91.	6
9. (a)	Reduce the matrix A to its row reduced echelon form and hence find its rank, where $A = \begin{pmatrix} 0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$.	4
(b)	If p is a prime and a, b are positive integers, then show that $(a+b)^p = (a+b) \pmod{p}$	4
(c)	Find two integers u and v satisfying $54u + 24v = 30$.	4
10.(a)	Solve $x^3 - 6x^2 - 6x - 7 = 0$ by Cardon's method.	6
(b)	If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and $\sin \alpha + \sin \beta + \sin \gamma = 0$, prove that	6
	$\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$	
	and $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$	
11.(a)	Find $\cos 2\theta \cosh 2\phi$, if $\sin(\theta + i\phi) = \tan \beta + i \sec \beta$.	5
(b)	Prove that every square matrix satisfies its own characteristic equation.	7

MATHGE4-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

1. Answer any *four* questions from the following:

 $3 \times 4 = 12$

(a) Show that x = 1 is a singular point of the ordinary differential equation.

$$(x^{2}-1)\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - y = 0$$

- (b) Evaluate: $\frac{1}{D^2 + 9} \sin 3x$
- (c) Find all three solutions of $\frac{d^3y}{dx^3} 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} 4 = 0$ and show that they are Linearly independent.
- (d) Show that the derivative of a vector of constant length is perpendicular to the vector.
- (e) A particle moves along a curve $x = e^{-t}$, $y = 2\cos 4t$, $z = 2\sin 4t$, where t is time. Determine its velocity and acceleration at $t = \pi$.
- (f) Evaluate ∇e^{r^2} where $r^2 = x^2 + y^2 + z^2$.

GROUP-B

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	Solve by Method of undetermined coefficients $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = x + e^x \sin x$.	6
3.	Solve: $\frac{d^4y}{dx^4} - 2\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = x^3$	6
4.	Solve $\frac{d^2y}{dx^2} - y = x$ in powers of x.	6

4. Solve
$$\frac{d^2y}{dx^2} - y = x$$
 in powers of x.

5. Solve:
$$\frac{dy}{dx} + 2y - 3z = x$$
 6

$$\frac{dz}{dx} + 2z - 3y = e^{2x}$$

6. If
$$\vec{F} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$$
, evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the curve *C* given by $x = t^2 + 1$, 6
 $y = 2t^2$, $z = t^3$ from $t = 1$ to $t = 2$.

7. Find the directional derivative of the function $f = \frac{1}{(x^2 + y^2 + z^2)^{1/2}}$ at the point 6 (3, 1, 2) in the direction of the vector $yz\hat{i} + zx\hat{j} + xy\hat{k}$.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. (a) Solve:
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$
 6

(b) Solve by method of variation of parameters
$$\frac{d^2y}{dx^2} + a^2y = \tan ax$$
.

9. (a) Solve $x\frac{d^2y}{dx^2} - (x-2)\frac{dy}{dx} + 2y = x^3e^x$ after determination of a solution of its reduced equation.

(b) Solve:
$$\frac{d^2x}{dt^2} + 4x + y = te^{3t}$$

 $\frac{d^2y}{dt^2} + y - 2x = \cos^2 t$ 6

6

4

4

10.(a) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ along the curve $x^2 + y^2 = 1$, z = 1 in the positive direction from 6

(0, 1, 1) to (1, 0, 1) if
$$\vec{F} = (2x + yz)\hat{i} + xz\hat{j} + (xy + 2z)\hat{k}$$
.

(b) If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$, $w = xy + yz + zx$, prove that 6

 $(\operatorname{grad} u) \cdot [(\operatorname{grad} v) \times (\operatorname{grad} w)] = 0$

11.(a) Prove that
$$\frac{d}{dt} \left(\vec{F}(t) \times \vec{G}(t) \right) = \vec{F}(t) \times \frac{d\vec{G}(t)}{dt} + \frac{d\vec{F}(t)}{dt} \times \vec{G}(t).$$
 4

(b) Prove that $\operatorname{grad} \phi$ is an irrotational vector field.

(c) State Green's theorem and show that it is a particular case of Stoke's theorem.

MATHGE4-IV

GROUP THEORY

GROUP-A

Answer any <i>four</i> questions from the following	$3 \times 4 = 12$
Prove that a group (G, \circ) contains only one identity element.	3
Prove that in a group $G(ab)^{-1} = b^{-1}a^{-1}$ for all $a, b \in G$.	3
Show that the set of matrices	3
$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$	
forms a commutative group under matrix multiplication.	
Let <i>a</i> be an element of a group <i>G</i> . If $O(a) = n$ and $a^m = e$, then show that <i>n</i> is a divisor of <i>m</i> .	3
Prove that every cyclic group is abelian.	3
Let $(G, \circ) = (\mathbb{Z}, +)$ and a mapping $\phi: G \to G$ be defined by $\phi(x) = x + 1$, $x \in G = \mathbb{Z}$. Examine if ϕ is a homomorphism.	3
GROUP-B	
Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
Let <i>H</i> and <i>K</i> be subgroups of a group <i>G</i> . Then show that <i>HK</i> is a subgroup of <i>G</i> if and only if $HK = KH$.	6
Prove that every group of prime order is cyclic.	6

9. Prove that a finite cyclic group of order n has one and only one subgroup of order d for every divisor d of n.

7.

8.

1.

2. 3.

4.

5. 6.

UG/CB	CS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised & Old/2023	
10.	Let <i>H</i> be a subgroup of a group <i>G</i> . Then show that <i>H</i> is normal in <i>G</i> if and only if $h \in H$ and $x \in G \Rightarrow xhx^{-1} \in H$.	6
11.	Let $f: G \to G'$ be a group homomorphism. Let $a \in G$ be such that $O(a) = n$ are $O(f(a)) = m$. Prove that $O(f(a)) O(a)$ and f is one-one if and only if $m = n$.	nd 6
12.	Let <i>H</i> be a subgroup of a group. Prove that the relation ρ defined on <i>G</i> by " $a\rho b$ if and only if $a^{-1}b \in H$ " for $a, b \in G$ is an equivalence relation on <i>G</i> .	6
	GROUP-C	
	Answer any two questions from the following	$12 \times 2 = 24$
13.(a)	Let G be a finite cyclic group generated by a. Then show that $O(G) = n$ if and only if $O(a) = n$.	6
(b)	Let G and G' be two groups and $\phi: G \to G'$ be a homomorphism, prove that $\phi(G)$ is a subgroup of G'.	6
14.(a)	Let H be a subgroup of a group G . Prove that there is always a one-one onto mapping between any two right cosets of H in G .	6
(b)	Let $f: G \to G'$ be a group homomorphism. Then show that ker f is a normal subgroup of G .	6
15.(a)	If G is a finite group, then show that the order of any element of G divides the order of G and $a^{O(G)} = e$ for any $a \in G$.	7
(b)	Let <i>H</i> be a subgroup of a group <i>G</i> and $[G:H] = 2$. Then show that <i>H</i> is normal in <i>G</i> .	5
16.(a)	Let <i>H</i> be a subgroup of a commutative group <i>G</i> . Prove that G/H is commutative. Is converse true? Justify.	5+2
(b)	Show that the map $\phi: (\mathbb{Z}_5, +_5) \longrightarrow (\mathbb{Z}_5, +_5)$, defined by $\phi(\overline{x}) = 3\overline{x}, \ \overline{x} \in \mathbb{Z}_5$ is an	5

MATHGE4-V

NUMERICAL METHODS

GROUP-A

Answer any *four* questions from the following: $3 \times 4 = 12$ 1. (a) If $\frac{5}{6}$ represent approximately by 0.8333. Find relative error and percentage error.

(b) Evaluate: $\left(\frac{\Delta^2}{E}\right)x$

isomorphism.

- (c) What is the geometrical representation of the Regula-Falsi method?
- (d) State three differences between direct and iterative methods.
- (e) Show that $\nabla y_{n+1} = h \Big[1 + \frac{1}{2} \nabla + \frac{5}{12} \nabla^2 + \cdots \Big] Dy_n$, where *D* is the differential operator.
- (f) Prove that $(1 + \Delta)(1 \nabla) = 1$.

GROUP-B

Answer any *four* questions from the following

 $6 \times 4 = 24$

6

- 2. Explain the Secant method for numerical solution of the equation f(x) = 0.
- 3. Use iterative formula to evaluate $\sqrt[7]{125}$, correct upto four significant figures.
- 4. Deduce Newton's backward interpolation formula with error terms.
- 5. Find f(1.02) from the following table:

x	1.00	1.10	1.20	1.30
f(x)	0.8415	0.8912	0.9320	0.9636

- 6. The equation $x^2 + px + q = 0$ has two real roots α , β . Show that the iteration method $x_{k+1} = -\frac{px_k + q}{x_k}$ is convergent near $x = \alpha$, if $|\alpha| > |\beta|$.
- 7. Evaluate $\int_{0}^{\pi/2} \sqrt{\sin x} \, dx$, taking n = 6, correct upto four significant figures by

Simpson's $1/3^{rd}$ rule.

GROUP-C

	Answer any <i>two</i> questions from the following	$12 \times 2 = 24$				
8. (a)	Describe Newton's-Raphson method and find the geometrical interpretation of Newton's-Raphson method.	6				
(b)	Find the positive root of the equation $x^3 + x - 1 = 0$ by fixed point iteration method correct to three decimal places.	6				
9. (a)	Explain the 2 nd order Runge-Kutta method for the numerical solution of a 1 st ord	er 6				
	differential equation $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y = y_0$, when $x = x_0$.					
(b)	Solve by modified Euler's method, the following differential equation for $x = 1$ by taking $h = 0.2$;	6				
	$\frac{dy}{dx} = xy$, $y = 1$ when $x = 0$					
10.(a)	Find a polynomial of least degree for the data $f(-1) = 1$, $f(0) = 1$, $f(1) = 1$ and $f(2) = 1$	-5. 6				
(b) Use Gauss-elimination method to solve the following system:						
	$-10x_1 + 6x_2 + 3x_3 + 100 = 0$					
	$6x_1 - 5x_2 + 5x_3 + 100 = 0$					
	$3x_1 + 6x_2 - 10x_3 + 100 = 0$					
	Correct upto three significant figures.					
11.(a)	Compute $\log_{10} 3.5$ from the data set:	6				
	x 2 3 5 7					

log10 x0.3010.4770.6990.845(b) Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method: